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The Hall effect and magnetoresistance of a 
two-dimensional electron gas upon scattering on 
microinhomogeneities of a magnetic field 

A V  Khaetsku 
Institute of Microelectronics Technology and High Purity Materials, 
USSR Academyof Sciences, 342432 Chemogolovka, Mosmw District, USSR 

Received 8 October 1990 

Abstract. The conductivity of a two-dimensional degenerate electron (ZDDEG) gas has been 
calculated in a microscopically inhomogeneous magnetic field of Abrikosov's vortices. The 
meanfreepatholelectronsisassumedto bemuchlarger thanthevortexdiameterU (in this 
case the vorticesplay the role ofadditional asymmetricscatterers). It isshown that the Hall 
constant for a degenerare electron gas contains the Hall factor defined by the value of 
parameter kFA (k, is the Fermi wavevector oftheelectron). TheHall resistanceisdetermined 
by the mean value of magnetic field in the 2DfG plane in the k F A  %- 1 limit only. The case of 
a multiquantum vortex has also been investigated (the number of flux quanta in the vortex 
is y* 1). In the case of classical small-angle scattering (kFA %- y )  the Hall resistance U 
determined by the mean value of the magnetic field. The Hall resistance decreases mon- 
otonically if scattering is of the classical, but not small-angle, type and is saturated in the 
region ofquantum scattering. It is shown that the presence of vortices leads to finite resistance 
(even in the absence of other scatterers). The transport scattering time of electrons on 
vortices is calculated. 

1. Introduction 

The present work is devoted to the calculation of the conductivity of a two-dimensional 
degenerate electron gas (ZDEG) with a large mean free path in a microscopically inhomo- 
geneous magnetic field of Abrikosov's vortices. Such a system may be obtained [l] if a 
heterostructure with a type I1 superconductor film sputtered on its surface is placed into 
an external homogeneous magnetic field (figure 1). The external magnetic field is split 
into separate quanta inside and in the vicinity of the superconductor. The characteristic 
diameter of the vortex is 2A, where A = 0.1 Fm is the penetration depth. Thus, ZD 
electrons move in the field of chaotically distributed Abrikosov's vorticest (figure 2). 
By varying the external field H we may vary the vortex concentration N .  This case is 
considered when the mean free path 1, of electrons is much larger than the vortex 
diameter. Hence, the electron is affected by the magnetic field only over a small part of 

t Thefactthatthevortexsystemformseitheraregularoranirregularlatticedependsonthepinningconditions 
in the system, We shall consider the case of the irregular vortex lattice as was the case in [I]. The case of the 
regular vortex lattice is qualitatively different from that under consideration and is not discussed below. 

To avoid misunderstanding, let us emphasize that the 2D electrons in question are h the normal state. 
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Type II superconductor r;" 
Figure 1. The system considered Figure 2. The trajectory of the ZD electron in the 

field of chaotically distributed Abrikosov's vorti- 
ces. The electron mean free path is much larger 
than thevortex diamerer2A. 

its trajectory. As a result, the vortices play the role of additional asymmetric electron 
scatterers. Note that the vortex is an essential quantumscafterer since the classical angle 
of the deviation of an electron passing through the region of the vortex magnetic field is 
always of the same order of magnitude as the angle of quantum mechanical diffraction. 
Thisisvalideven when theelectron wavelengthismuchsmallerthanthevortexdiameter: 
AF< A. This is because only a single flux quantum is enclosed within the vortex. There- 
fore, the scattering should be described by quantum mechanics. 

The main problem is to calculate the Hall resistance in such a system when magnetic 
field is strongly inhomogeneous. Will the Hall resistance be determined by the mean 
value of the magnetic field in the system? Also of interest is the value of the classical 
magnetoresistance in such a system. 

First let us briefly report on the results obtained and offer a qualitative explanation 
of them. The main result resides in the fact that, if the mean free path is much larger 
than the vortex size, the value of the Hall resistance for degenerate electron gas is 

pzy = ( H / W a  (1) 
where His the mean value of magnetic field in the ZDEG plane which coincides with the 
value of external homogeneous magnetic field applied to the structure. The value of the 
Hall factor a is determined by parameter kFA, where k, is the Fermi wavevector of the 
electron. The parameter kFA defines the degree of quantum scattering of the electron 
on the vortex. The degree of quantum scattering increases with decreasing kFA, Later it 
is assumed that the inequality hF,  A Q I,, N-'" is fulfilled. Here the relationship between 
AF and A and between I ,  and N-''' may be arbitrary (N-ln is the vortex spacing). It is 
shown that the Hall resistance is determined by the mean value of the magnetic field 
(i.e. a = 1) only in the limit kFA 9 1. In this case the electron scattering on the vortex is 
the small-angle (characteristic scattering angle 80 = 2/kFA 1). Therefore, in the pure 
system (1,- =) the electron trajectory consists of a large (about 2 ~ 1 8 ~ )  number of 
segments about 1/2ANlong which form an almost closed curve approaching (at kFIZ -P =) 
a circle with a radius defined by the mean magnetic field in the plane. As kFA decreases, 
the Hall resistance decreases monotonically, tending to zero in the limit kFA + 0. As is 
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I 

Figure3. Dependenceof the Hallresistanceonparameterk~ for the case wheneachvortex 
contains many flux quanta y (* 1) .  See section 3. 

known [2], the transverse force acting on the electron from the vortex is equal to zero in 
thequantumlimitA/AF2,-t 0,ifthenumber yofenclosedfluxquantaisequal toaninteger 
or half-integer ( y  = @/Qo, Qo = 2dc/lel). In the case of the Abrikosov vortex, y = f .  

In order to understand better the behaviour of the Hall resistance in systems with 
strongly inhomogeneous distribution of magnetic field, we have also considered the case 
of the multiquantum vortex ( y  9 1). The result is represented in figure 3. The Hall factor 
is equal to unity only in the limit of classical small-angle scattering ( k d  % y). In this 
parameter region the cyclotron radius R, in the internal vortex field is large compared 
with the vortex diameter and the characteristic scattering angle A/Rc - y/kFA is small. 
The reason why the Hall factor in this limit is equal to unity may be understood from the 
following simple considerations. The value of the Hall force that appears in the field 
term of the Boltzmann kinetic equation is defined by 

N d2XY*pyY J 
where Y is the wavefunction of thescattering electron, fiy = -(e/c)fxgthe operator of 
the Lorentz force acting on the electron and fi the internal magnetic field in the vortex. 
The domain of integration in (2 )  is the vortex area. In the classical small-angle scattering 
limit in question, equation ( 2 )  is reduced to -N(e/c)VFldz.YH = -(e/c)VFHsince for 
small-angle scattering V, = VF (VF is the Fermi velocity), and NJd*Xfi = H from the 
condition of magnetic flux conservation. Hence, in this limit the Hall factor 01 = 1. From 
this it is clear that the Hall resistance is maximum upon classical small-angle scattering 
and decreases with increasing characteristic scattering angle. Indeed, consider the par- 
ameter region y'o < kFA < y (see figure 3, region 11). Here the cyclotron radius in the 
internal vortex field is small compared with the vortex diameter, but it is still large in 
comparison with the electron Fermi wavelength. In this parameter region the scattering 
isnotofasmall-anglenaturesince theelectronpenetratesinto thevortexby asmalldepth 
of the order of the cyclotron radius only. The Hall resistance decreases monotonically in 
proportion to the value = (kFA/# in accordance with the small part of the 
vortex area which affects the electron upon its scattering. The decrease in the Hall 
resistance with decreasing kFA can be easily understood from the following consider- 
ations. As is known [2], in the limiting quantum case kFA < 1 (region IV in figure 3) the 
transverse force actingfrom the vortex is determined by the phase differencekygained 
by the quasiparticle along the trajectories on the right and left of the vortex, the value 
of the force being periodically dependent on the number oienclosed flux quanta. As a 
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result, in the quantum limit the vortex behaves as if the number of enclosed quanta were 
y - [ y ] ,  where [ y ]  is the integral part of y.  By contrast, in the classical limit (kFA 4 y )  
the Hall force is proportional to the number of enclosed quanta. It should be noted again 
that, in the case in question y % 1, the change from the 'classical' value (Y = 1 to the 
quantum value (Y = [sin(2ny)]/2ny occurs in the region of classical non-smal/-angle 
scattering. 

It is shown that in the absence of other scatterers the presence of vortices leads to 
finite resistance. The resistivity caused by scattering on vortices is 

pxx = m/ne2a, I/% = MJ(1/Gl) l/r, = WNV, cc H (3) 

where z,, is the transport scattering time of electrons on vortices, l / ro  is the electron- 
vortex collision frequency?. Therefore, in the degenerate electron gas the classical 
magnetoresistance is not equal to zero and is proportional to the modulus of H. Such 
behaviour of the magnetoresistance is due to the linear dependence of scatterer con- 
centration, i.e. Abrikosov'svortices, on H. 

2. Single-quantum vortex ( y  = 1) 
In this section we calculate the Hall resistance and magnetoresistance of ZDEG in the 
held of chaotically distributed Abrikosov's vortices. The electron distribution function 
f, is determined from the Boltzmann kinetic equation 

Here the first term on the right-hand side of the kinetic equation (let us denote it by 
St'v,} describes collisions with vortices whilst the second term describes collisions 
with impurities. It should be emphasized that the presence of vortices is taken into 
consideration only in the collision term. Also note that transition probability K is an 
asymmetric value. Proceeding from the fact that the scattering on vortices is elastic, we 
may seek the solution of equation (4) in the formf, = fU(Ep) + (Jfo/J&)@. C), where fo 
is the equilibrium Fermi function and C is so far an arbitrary vector. Then the electron- 
vortex collision integral is transformed to 

where F, is the scattering amplitude on the vortex corresponding to the transferred 
momentum q. Since q = -@ x h) sin 8 -p(l  - cos e), where 8 is the scattering angle 
and h is the unit vector along the magnetic field in the vortex (the normal to the ZD 
plane). Finally we obtain that the electron-vortex collision integral can be separated 
into two terms 

S~"(f,} = -(a+) (U x H) (ahlap) - (f, - fo)/z,,. (6)  
When obtaining the first term in (6), we used the relationship between the vortex 

t Here the real vortex ( y  = 4) and the case of small-angle scattering (kd S 1) are implied. The definition of 
angle &is given above. 
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concentration and mean magnetic field in the plane N(@, /2 )  = H .  The factor (Y is 
determined by the expression 

q e )  = F~ 

The transport scattering time of electrons on vortices is determined by 

+iT 

r;' = N u F I Z  d e ( 1  -cos O)lF(e)lz. 

(7) 

As a result, in the absence of other scatterers the presence of vortices leads to finite 
resistance in the system. 

Thus, from (6) it follows that the problem is reduced to that of electron movement 
in a homogeneous field crH. Hence, for the value of the Hall resistance, we obtain (1). 
Here it should be noted that the small-angle scattering region where the solution does 
not have the form of the sum of the incident and diverging cylindrical waves may 
contribute significantly to the transverse (Hall) force acting on the electron from the 
vortex. This is the case, for instance, in the quantum limit kFA + 0 when the long-range 
action of the vortex field gives rise to a transverse force of a specific diffraction origin 
which is not expressed in terms of the scattering amplitude [ 2 ] .  Therefore, calculations 
should be carried out with care and the contribution of the force of the diffraction origin 
(the so-called Iordanskii force [3,4]) should be estimated. 

The scattering amplitude should be known in order to calculate (7) and (8). In this 
section we consider the limiting case kFA 9 1 when the scattering is of the small-angle 
type (the scattering angle is of the order of Bo = 2/kFA 4 1). This enables the eikonal 
approximation to be used for calculating the scattering amplitude [ 5 ] .  The wavefunction 
behind the vortex is obtained from the incident wavefunction by integration of the xth 
component of the vector potential along unperturbed straight trajectories (x  axis): 

Y r ( r )  = exp(ikx) exp ( i - ic 1;- A A ~ )  h) r = x, y. (9) 

Let us choose the vector potential A(r) in the form A, = 0, A,(r) = Hr/2, at r < A and 
QO/4,zr at r 3 A, where U is the vortex internal field. Here we use the model of the 
vortex with a sharp boundary and constant internal field. It will be shown below that the 
result for the Hall constant in the limit kFA I> 1 is independent of the model of field 
distribution in the vortex. 

Equation (9)isvalid atx Q kFA2. Tocalculate thescatteringamplitude,it issufficient 
to know the wavefunction at distances x such that A Q x kFAz. Later it will be shown 
that, when calculating the scattering amplitude, the characteristic values of IyI are 
approximately equal to A. In this &e Iyl< xand the integral in the exponent in (9) may 
be extended to infinity: 

(10) 
W )  = exp(iki4 exp[iW)l 
~ ( y )  = [n/2 - tan-'(Az/yz -1)'/2] sgn(y) + (y/A)(1- Y ~ / A ~ ) ' / ~ .  
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In equation (10)(1 - y2/12)'b at lyl> I should be substituted for zero. The scattering 
amplitude is calculated by means of (10) [5] :  

k 112 +r m) = (g) dyexp(-ik,ye)~exp[i(~(y)~ -1). (11) -- 
The characteristic scattering angle in (11) is B o d  I .  The asymptotic behaviour of the 
scattering amplitude (11) is as follows: at 181 4 Bo,  IF(S)I2 
IF(B)1* 01 1/18Is ((integral (11) is calculated by introducing the factor exp(-dlyl) with 
subsequent passage to the limit S-. 0 , 6  > 0 [5]). Note that at 101 B Bo the asymptotic 
behaviour coincides with the angular dependence of the small-angle scattering amplitude 
on an infinitely thin magnetic string [6] ,  which is natural. The power asymptotic behav- 
iour at181 B Bo is due to the use of the model of the vortex with a sharp edge. 

Now let us turn to calculation of (7) and (8). The calculations presented in the 
appendix yield 

1/@; at 8, Q 181 Q 1, ' 

For l/rtr we obtain equation (3). Thus in the limit kFA > 1 the Hall resistance is deter- 
mined by the mean value of magnetic field. Note that 01 is proportional to the integral 
of the internal magnetic field in the vortex over its area, i.e. to the flux in the vortex. 
Hence, the value of (12) is independent of the model of field distribution in the vortex. 

Finally, let us make two more important points. As is shown in the appendix, 
+= 

1 h t r  = NUF j-, dy @:1Lv)/2 

where e&) is the scattering angle of electron for the impact parametery calculated by 
the formulae of classical mechanics at kFA > 1. Therefore in this limit the transport 
cross section is determined by its classical expression. Let us note that the differential 
scattering cross section therewith is appreciably different from the classical value. The 
property indicated docs not depend on the vortex model in use and is common to all the 
cases when scattering may be described by the eikonal approximation. For instance, in 
[7] it was shown that in the case of conventional potential scattering the transport cross 
section coincides with its classical value even in the limit of Born small-angle scattering 
provided that the electron wavelength is small compared with the size of the scatterer. 

The second point concerns the calculation of LY. The calculation presented in the 
appendix corresponds to the integral (7) at .9+ 0 taken in the sense of thc principal 
value (at e-+ 0, 01 01 J dele). As mentioned above, the calculation of the transverse 
force in the region of very small angles is incorrect when carried out with the use of the 
scattering amplitude. Let us verify the obtained value of cr = 1, i.e. that in the limit 
kFI B 1 the contribution of the diffraction region is actuaUy small. At the same time let 
us give another way of calculating CY. The transverse force may be calculated by immedi- 
ate useof thesolutionof (9). The identityexpressing thelaw ofmomentumconservation 
has the form [4] 

f i2  a a ( Y Y ) ]  n, dl 
4m a x x  ax, 

f [L(ih---AkY*) aY* e (-ih---A," aY e +CC---- 

2m ax, c ax, c !e 

= ~ ! e G ~ , n ~ d i = f ~ ~ ! e ~ d 2 x Y ~ F , Y  - 
(13) 
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11111 I‘, .H 1111 

Figure 4. Path S? of integration lor calculation 01 
the transverse force acting on the electron from 

Il l  thevortex(see(13)). 

where the term on the left-hand side produces momentum carried over by scattered 
electrons and the term on the right yields the mean value of the force acting on the 
electrons; S ( 2 )  is the area limited by the contour 2, and nk the vector of the normal to 
contour 32. Choose contour 2 (figure 4) so that it encloses the vortex. Then for j = y 
using (9) it can easily be shown that the integral JGkink dl along sides I, I1 and I11 of the 
contour is equal to zero and the integral along side IV is 

( le l /c )oFI  dY I’ g ( x l > Y )  = (lel/c)UF(@O/2) 
(IV) -- 

After multiplying this value by the vortex concentration N ,  we obtain for (2) the value 
(lel/c)VFH, which corresponds to 01 = 1. As kFA decreases, the Hall resistance decreases 
monotonically, reducing to zero at kFA + 0. When kFA 

In an experiment [l] it was actually observed that the Hall resistance of a ZDEG in the 
magnetic field of Abrikosov’s vortices coincides with the Hall resistance in a homo- 
geneous magnetic field (to an accuracy of less than 1%). In the experiment the value of 
kFA was about 29, and the mean free path 1, 2 pm. The experimental points lie on the 
same straight line well in fields less than and greater than 200 G (in a field B = 200 G the 
vortices were strongly overlapped so that the variation in magnetic field in the ZDEG 
plane does not exceed several per cent). 

The linear dependence (versus If) of magnetoresistance (see (3)) was also experi- 
mentally observed in the region of magnetic fields until thevortices werenot overlapping. 
The experiment [ 11 corresponded to the case of a sufkiently high electron concentration 
that the electron wavelength was small compared with the vortex diameter. It would be 
interesting toverify experimentally the predicted effect of deviationof the Hall resistance 
from the value defined by the mean value of magnetic field in the system. This could be 
done by measuring the Hall resistance on heterostructures with one and the same 
superconducting film but different electron concentrations n (each time the electron 
meanfreepathshouldbelargecomparedwith thevortexdiameter). IftheHallresistance 
(multiplied by nec) is plotted as a function of external magnetic field, the following 
pattern should be observed. In the region of magnetic fields that are much smaller than 
the characteristic field of vortex overlapping the straight lines corresponding to various 
electron concentrations will have different slopes which are smaller for lower electron 

l ~ ,  a 0; (kFA)*. 
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concentrations. This is due to the difference in the Hall factor. In the region of magnetic 
fields larger than the field of vortex overlapping (when the magnetic field in the system 
is uniform) the straight lines corresponding to different electron concentrations should 
coincide. 

3. Multiquantum vortex ( y  B 1) 

In this section we consider the case when many quanta of flux yare enclosed inside the 
vortex. The aim is to study the dependence of the Hall factor (Y on the parameter kFh. 
It is still assumed that the vortex diameter is small compared with the mean free path 
and the model of the vortex with a sharp edge and constant internal field is used. The 
result is shown in figure 3. In region I (kFh B y) the cyclotron radius R, in the vortex 
internal field is large compared with the vortex diameter 2h. Hence, the scattering is of 
a small-angle nature (0  = h/R, 4 1). Therefore, in this parameter region the electron 
wavefunction Y may be found by the method described in section 2 (integrating the 
vector potential along straight trajectories). As a result, for ‘4 we obtain an expression 
of type (9). Then using equation (13) and choosing again contour 3, as shown in figure 
4, we obtain (lel/c)VFHfor (2) and, hence, CY = 1 (as previously His  the mean magnetic 
fieldintheplane). Nowlet~sconsiderregionII(seefigure3)wherey”~~ kFl 4 ywhich 
may be written as hF 4 R, 4 h. The first inequality implies that scattering both inside and 
outside the vortex may be described by the quasiclassical method whilst the second 
inequality implies that scattering is not of a small-angle type. In order to calculate the 
transverse force, let us use equation (13) and choose the vortex perimeter as the 
integration path. Since the electron movement in the whole space may be described by 
classical mechanics, the tensor of momentum flux density may be written as G, = u f l I ,  
uk and pi being the kinematic velocity and momentum. Since the electron penetrates 
into the vortex to a small depth of about R,, it is specularly reflected from the vortex 
boundary (the local angle of incidence is equal to the angle of reflection) in the zero 
approximation with respect to the parameter R,/h. For this reason, the value 
$L Gkynk dl = hJde  u,py is equal to zero as electrons with impact parameters ( + y )  and 
( - y )  make an opposite contribution to this value (U, is the projection of the electron 
velocity on the radius vector; the incident electron flux is directed along the x axis). It is 
obvious that the difference between the angle of incidence and the angle of reflection is 
of the order of R,/h 4 1. This value will define the degree of scattering asymmetry on 
the vortex in this parameter region. Thus we obtain 

(only the parametric dependence and not the numerical coefficient which is about unity 
is of interest). Multiplying the obtained value by the vortex concentration and using the 
relationship NyQO = H between the concentration and mean magnetic field, for (2) we 
finally obtain (lel/c)u,H(R,/h)’ and hence 

(Y = (Rc/h)2 = (kFh/y)*.  

Thus, in this parameter region the Hall resistance decreases monotonically (figure 
3). Estimating the value of (Y at point kFh = y@, where the region of applicability of 
equation (14) terminates, we obtain (Y 5 l/y. Now refer to region IV (figure 3). Using 



Hall effect and resistance of WEG infield of oortices 5123 

the results obtained in [2] for the scattering of a plane electron wave on an infinitely thin 
magnetic string, for A -+ 0 we have 

CY = [sin(hy)]/2ny. (15) 

Clearly, in the region kFA 1, cu is also equal to (15) to within an order of magnitude (if 
y is not equal to an integer or a half-integer so that sin(2ny) = 1). This case is shown by 
the full curve in region IV (figure 3). However, if y is an integer or a half-integer, then, 
at A --f 0, (Y reduces to zero. However, on the boundary of the quantum region (kFA = 
I), cushouldalsoreachabout I/y(sincein theregionkFA > 1 ,  when thesituationoutside 
the vortex is classical, there can be no difference between the cases when y is exactly 
equal to an integer or a half-integer or is different from them). The case of an integer or 
half-integer y is shown by the broken curve in region IV (figure 3). Therefore, on the 
boundaries of region 111 the values of (Y have the same orders of magnitude and there is 
no parametric variation in CY. In region 111 the magnetic length in the internal vortex 
field is smaller than the electron wavelength Ai, 4 A F  (or hCc S cF, 6, being the cyclotron 
frequency in the internal vortex field). The electron movement outside the vortex may 
bedescribed classically; yet in the internal region theelectronstate isstrongly quantized. 
The electron penetrates into the vortex during scattering to a small depth of the order 
of the magnetic length. Unfortunately, because of mathematical problems we cannot 
determine the form of the dependence of a in this region but there are qualitative 
physical considerations that suggest the absence of a parametric variation in CY. 

A brief account of this work has been published in [8]. 
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Appendix 

Let us calculate cu in (7). Since IF(0)lZ cc 1/1015 at 101 S eo, (7) is determined by the 
integration region 101 = Bo 4 1. Then the integration for 0 in (7) may be extended to 
infinity and, with the aid of (11). cu at B # 0 may be written as 

a 
xexp(-ipE)It^dpl exp(-6lp,l)exp[-irp(p1)1 ( - i ~ )  exp(ip1E). 

-I 

(AI) 

In integral (Al) we have introduced the new integration variables y/h = p,  kFde = E 
(6-  0, S > 0). Following integration for p ,  by parts in (Al), integration with respect 
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to g yields 2x6(p1 - p) .  Finally we obtain 

Note that using the relationship 

where fi is the internal field in the vortex, (A2) may be also written as 

where Ocl(y) is the angle of electron scattering on the vortex for an impact parameter y 
calculated from the formulae of classical mechanics for kFA P 1, Thus, in this limit, e 
coincides with the value calculated with the help of classical mechanics (and equal to 
unity). This is due to the small-angle character of scattering. 

Now let us turn to calculation of (8). Using the small value of 8 and introducing again 
the variablesp and 5 we may write (8) as 

a t x  1 9 += 
-=_ TU 4Zf-= d , t I  _=  dp exp(-61p1)~exp[ig,(p)1-1}~exp(--i~p) 

Following integration by parts for p and p,  in (A5), integration with respect to Eyields 
2irS(p,  - p). Finally we obtain 

Using (A3), we may also write (A6) as 
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