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Abstract. The conductivity of a two-dimensional degenerate electron (2DEG) gas has been
calculated in a microscopically inhomogeneous magnetic field of Abrikosov’s vortices. The
mean free path of electrons is assumed to be much larger than the vortex diameter 24 (in this
case the vortices play the role of additional asymmetric scatterers), It is shown that the Hall
constant for a degenerate electron gas contains the Hall factor defined by the value of
parameter kgd (kyis the Fermi wavevector of the electron). The Hall resistance is determined
by the mean value of magnetic field in the 2DEG plane in the kgA 2 1 limit only, The case of
a multiquantum vortex has also been investigated (the number of flux quanta in the vortex
is y = 1). In the case of classical small-angle scattering (X¢A ® ¥) the Hall resistance is
determined by the mean value of the magnetic field. The Hall resistance decreases mon-
otonically if scattering is of the classical, but not small-angle, type and is saturated in the
region of quantumscattering. It isshown that the presence of vortices leads to finite resistance
(even in the absence of other scatterers). The transport scattering time of electrons on
vortices is calculated.

1. Introduction

The present work is devoted to the calculation of the conductivity of a two-dimensional
degenerate electron gas (2DEG) with a large mean free path in a microscopically inhomo-
geneous magnetic field of Abrikosov’s vortices. Such a system may be obtained [1] if a
heterostructure with a type II superconductor film sputtered on its surface is placed into
an external homogeneous magnetic field (figure 1). The external magnetic field is split
into separate quanta inside and in the vicinity of the superconductor. The characteristic
diameter of the vortex is 24, where A =0.1 um is the penetration depth. Thus, 2D
electrons move in the field of chaotically distributed Abrikosov’s vorticest (figure 2).
By varying the external field H we may vary the vortex concentration N. This case is
considered when the mean free path /; of electrons is much larger than the vortex
diameter. Hence, the electron is affected by the magnetic field only over a small part of

1 The fact that the vortex system formseither a regular or anirregulariattice depends on the pinning conditions
in the systern. We shall consider the case of the irregular vortex Jattice as was the case in [1]. The case of the
regular vortex lattice is qualitatively different from that under consideration and is not discussed below,

To avoid misunderstanding, let us emphasize that the 2D electrons in guestion are in the normal state.
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Figure 1. The system considered. Figure 2. The trajectory of the 2D electron in the
field of chaotically distributed Abrikosov's vorti-
ces. The electron mean free path is much larger
than the vortex diameter 24.

GaAs

its trajectory. As a result, the vortices play the role of additional asymmetric electron
scatterers. Note that the vortex is an essential quantum scatterer since the classical angle
of the deviation of an electron passing through the region of the vortex magnetic field 1s
always of the same order of magnitude as the angle of quantum mechanical diffraction,
Thisis valid even when the electron wavelength is much sinailer than the vortex diameter:
Ap<€ A. This is because only a single flux quantum is enclosed within the vortex. There-
fore, the scattering should be described by quantum mechanics.

The main problem is to calculate the Hall resistance in such a system when magnetic
field is strongly inhomogeneous. Will the Hall resistance be determined by the mean
value of the magnetic field in the system? Also of interest is the value of the classical
magnetoresistance in such a system.

First let us briefly report on the results obtained and offer a qualitative explanation
of them. The main result resides in the fact that, if the mean iree path is much larger
than the vortex size, the value of the Hall resistance for degenerate electron gas is

Py = (Hnec)a )
where H is the mean value of magnetic field in the 2DEG plane which coincides with the
value of external homogeneous magnetic field applied to the structure. The value of the
Hall factor « is determined by parameter kgd, where &g is the Fermi wavevector of the
electron. The parameter kpA defines the degree of quantum scattering of the electron
on the vortex. The degree of quantum scattering increases with decreasing kpA. Later it
is assumed that the inequality Ap, A € [, N™ 12 is fulfilled. Here the relationship between
A and 4 and between /; and N™'/2 may be arbitrary (N~ is the vortex spacing). It is
shown that the Hall resistance is determined by the mean value of the magnetic field
(i.e. & = 1) only in the limit kA > 1. In this case the electron scattering on the vortex is
the small-angle (characteristic scattering angle 6y = 2/kgA < 1). Therefore, in the pure
system (I;— o) the electron trajectory consists of a large (about 27/6y) number of
segments about 1,/2AN long which form an almost closed curve approaching (at kgA — )
acircle with a radius defined by the mean magnetic field in the plane. As kzA decreases,
the Hall resistance decreases monotonically, tending to zero in the limit kgA — 0. As is
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Figure 3. Dependence of the Hall resistance on parameter &gl for the case when each vortex
contains many flux quanta v (> 1). See section 3.

known [2], the transverse force acting on the electron from the vortex is equal to zero in
the quantum limit A/Az— 0, if the number y of enclosed flux quanta is equal to an integer
or half-integer (y = ®/®,, ©, = 2nhic/|e|). In the case of the Abrikosov vortex, y = 4.

In order to understand better the behaviour of the Hall resistance in systems with
strongly inhomogeneous distribution of magnetic field, we have also considered the case
of the multiguantum vortex (v > 1). The result isrepresented in figure 3. The Hall factor
is equal to unity only in the limit of classical small-angle scattering (kpA > ). In this
parameter region the cyclotron radius R, in the internal vortex field is large compared
with the vortex diameter and the characteristic scattering angle A/R, ~ y/kgA is small.
The reason why the Hall factor in this limit is equal to unity may be understood from the
following simple considerations. The value of the Hall force that appears in the field
term of the Boltzmann kinetic equation is defined by

N[ EXYEW 2)
where W is the wavefunction of the scattering electron, F = —(e/c) V.Hthe operator of

the Lorentz force acting on the electron and H the mternal magnetic field in the vortex.

The domain of integration in (2) is the vortex area. In the classical small-angle scattering
limit in question, equation (2} is reduced to —N{(e/c)Vy fd*X H = —(e/c)VsH since for
small-angle scattering V, = Vi (Vg is the Fermi velocity), and N fd*X H = H from the
condition of magnetic flux conservation. Hence, in this limit the Hall factor & = 1. From
this it is clear that the Hall resistance is maximum upon classical small-angle scattering
and decreases with increasing characteristic scattering angle. Indeed, consider the par-
ameter region y/2 < kgi < y (see figure 3, region I1). Here the cyclotron radius in the
internal vortex field is small compared with the vortex diameter, but it is still large in
comparison with the electron Fermi wavelength. In this parameter region the scattering
isnot of asmall-angle nature since the electron penetratesinto the vortexby asmalldepth
of the order of the cyclotron radius only. The Hall resistance decreases monotonically in
proportion to the value (R./A)? = (kgA/y)? in accordance with the small part of the
vortex area which affects the electron upon its scattering. The decrease in the Hall
resistance with decreasing &4 can be easily understood from the following consider-
ations. As is known [2], in the limiting quantum case kpd < 1 (region IV in figure 3) the
transverse force acting from the vortex is determined by the phase difference 2y gained
by the quasiparticle along the trajectories on the right and left of the vortex, the value
of the force being periodically dependent on the number of enclosed flux quanta. As a
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result, in the quantum limit the vortex behaves as if the number of enclosed quanta were
¥ — [v], where {y] is the integral part of y. By contrast, in the classical limit (kgd > 7}
the Hall force is proportional to the number of enclosed quanta. It should be noted again
that, in the case in question y # 1, the change from the ‘classical’ value & = 1 to the
quantum value a = [sin(27ry)]/27y occurs in the region of classical non-small-angle
scattering.

It is shown that in the absence of other scatterers the presence of vortices leads to
finite resistance. The resistivity caused by scattering on vortices is

P =mnett,  1fr,=163(1/70)  1/1g=2NVi<H (3)

where 1., is the transport scattering time of electrons on vortices, 1/74 is the electron—
vortex collision frequencyt. Therefore, in the degenerate electron gas the classical
magnetoresistance is not equal to zero and is proportional to the modulus of H. Such
behaviour of the magnetoresistance is due to the linear dependence of scatterer con-
centration, i.e. Abrikosov’s vortices, on f.

2. Single-quantum vortex (y = )

In this section we calculate the Hall resistance and magnetoresistance of 2DEG in the
field of chaotically distributed Abrikosov’s vortices. The electron distribution function
fis determined from the Boltzmann kinetic equation

af, T
eE - u-ﬁ—:EKpﬂ_,prﬁ— Kprprol) =2 — ¢ : 4
q i

Here the first term on the right-hand side of the kinetic equation (let us denote it by
St'{f,} describes collisions with vortices whilst the second term describes collisions
with impurities. It should be emphasized that the presence of vortices is taken into
consideration only in the collision term. Also note that transition probability K is an
asymmetric value. Proceeding from the fact that the scattering on vortices is elastic, we
may seek the solution of equation (4) in the form f, = f(e,) + (3f5/3€) (p - C), where f,
is the equilibrium Fermi function and C is so far an arbitrary vector. Then the electron-
vortex collision integral is transformed to

st =23 kg0 = Lno S IR0 5)

where F, is the scattering amplitude on the vortex corresponding to the transferred
momentum ¢. Since ¢ = —(p X k) sin 8 — p(1 — cos &), where 8 is the scattering angle
and h is the unit vector along the magnetic field in the vortex (the normal to the 2p
plane). Finally we obtain that the electron—vortex collision integral can be separated
into two terms

Sfpt = —(ee/c)(v X H) (8f,/3p) ~ (f, — fo)/ % (6)

When obtaining the first term in (6), we used the relationship between the vortex

+ Here the real vortex (y = §) and the case of small-angle scattering (kpA 2 1) are implied. The definition of
angle #,is given above.
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concentration and mean magnetic field in the plane N(®,/2) = H. The factor « is
determined by the expression

k T '
@=+ ?” d8sin8|FB)2  FO)=F, %)
-
The transport scattering time of electrons on vortices is determined by

g = Nu.;r” do (1 - cos )| F(O)". ®)

As a result, in the absence of other scatterers the presence of vortices leads to finite
resistance in the system.

Thus, from (6) it follows that the problem is reduced to that of electron movement
in a homogeneous field aH. Hence, for the value of the Hall resistance, we obtain (1).
Here it should be noted that the small-angle scattering region where the solution does
not have the form of the sum of the incident and diverging cylindrical waves may
contribute significantly to the transverse (Hall} force acting on the electron from the
vortex. This is the case, for instance, in the quantom limit Az — O when the long-range
action of the vortex field gives rise to a transverse force of a specific diffraction origin
which is not expressed in terms of the scattering ampliitude [2]. Therefore, calculations
should be carried out with care and the contribution of the force of the diffraction origin
(the so-called Iordanskii force {3, 4]) should be estimated.

The scattering amplitude should be known in order to calculate (7) and (8). In this
section we consider the limiting case kgA 1 when the scattering is of the smail-angle
type (the scattering angle is of the order of &, = 2/kzA < 1). This enables the eikonal
approximation to be used for calculating the scattering amplitude [5]. The wavefunction
behind the vortex is obtained from the incident wavefunction by integration of the xth
component of the vector potential along unperturbed straight trajectories (x axis):

Wi(r) = exp(ikx) exp(i Eeé .F A.ln dx) r=x,v. C)]

Let us choose the vector potential A(r) in the form A, = 0, Ay(r) = Hr/2, at r< 4 and
Do/dmr at r = A, where H is the vortex internal field. Here we use the model of the
vortex with a sharp boundary and constant internal field. It will be shown below that the
result for the Hall constant in the limit kzd = 1 is independent of the model of field
distribution in the vortex.

Equation (9) is valid at x < kgA2. To calculate the scattering amplitude, it is sufficient
to know the wavefunction at distances x such that A < x < kzAZ, Later it will be shown
that, when calculating the scattering amplitude, the characteristic values of |y| are
approximately equal to A. In this case |y| < x and the integral in the exponent in (9) may
be extended to infinity:

Wilr) = exp(ikex) explig(y)]

@(y) = [7/2 = tan "' (A%/y? 1) 7] sgn(y) + (y/A)(1 — y2 /A%~ o
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In equation (10) (1 — y*/A%)2 at [y| > 4 should be substituted for zero. The scattering
amplitude is calculated by means of (10) [5]:

1/2 faz
Fo)=(55) | ayemi-ikeyO)temlitet] -1 an

The characteristic scattering angle in (11) is 8, < 1. The asymptotic behaviour of the
scattering amplitude (11} is as follows: at |6] <€ B, |F(8)]? < 1/6% at 8,<|8] <1,
[F(8)* = 1/|8)° ((integral (11) is calculated by introducing the factor exp(- |y|) with
subsequent passage to the limit § — 0, 8 > 0[5]). Note that at |8| <€ 8, the asymptotic
behaviour coincides with the angular dependence of the small-angle scattering amplitude
on an infinitely thin magnetic string [6}, which is natural. The power asymptotic behav-
iour at|@] » @, is due to the use of the model of the vortex with a sharp edge.

Now let us turn to calculation of (7) and (8). The calculations presented in the
appendix yield

_ e | i 5 _ le] @ _
a= The ) dy dx H(x,y) = p =1. (12)

Ll

For 1/t we obtain equation (3). Thus in the limit kA » 1 the Hall resistance is deter-
mined by the mean value of magnetic field. Note that « is proportional to the integral
of the internal magnetic field in the vortex over its area, i.e. to the flux in the vortex.
Hence, the value of {12) is independent of the mode] of field distribution in the vortex,
Finally, let us make two more important points. As is shown in the appendix,

-
1/re=Nor [ 4y 62072

where 84(y) is the scattering angle of electron for the impact parameter y calculated by
the formulae of classical mechanics at kzA > 1. Therefore in this limit the transport
cross section is determined by its classical expression. Let us note that the differential
scattering cross section therewith is appreciably different from the classical value, The
property indicated does not depend on the vortex model in use and is common to all the
cases when scattering may be described by the eikonal approximation. For instance, in
[7] it was shown that in the case of conventional potential scattering the transport cross
section coincides with its classical value even in the limit of Born small-angle scattering
provided that the electron wavelength is small compared with the size of the scatterer.

The second point concerns the calculation of . The calculation presented in the
appendix corresponds to the integral (7) at 8 — 0 taken in the sense of the principal
value (at 8 — 0, a « [ d6/8). As mentioned above, the calculation of the transverse
force in the region of very small angles is incoriect when carried out with the use of the
scattering amplitude. Let us verify the obtained value of & = 1, i.e. that in the limit
kpA = 1 the contribution of the diffraction region is actually small. At the same time let
us give another way of calculating . The transverse force may be calculated by immedi-
ate use of the solution of (9). The identity expressing the law of momentum conservation
has the form {4]

1 oP* ¢ *)(,aqie ) AP 9 8 *}
jg [Zm (m axy cAk‘p i dx; .':A"\p +ee 4m dx, dx; () | dl

35 Gymadl=[ @xwiy (13)
52
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Figure 4. Path & of integration for calculation of
. the transverse force acting on the electron from
{1} the vortex (see (13)).

where the term on the left-hand side produces momentum carried over by scattered
electrons and the term on the right yields the mean value of the force acting on the
electrons; S(3£) is the area limited by the contour &£, and », the vector of the normal to
contour £. Choose contour &£ (figure 4) so that it encloses the vortex. Then for j =y
using (9) it can easily be shown that the integral { Gy;n, d/ along sides I, 11 and I1I of the
contour is equal to zero and the integral along side IV is

X
el/yos | ay [ e, Hex1,5) = Gelfo)o@o/2).
awv) -= :
After multiplying this value by the vortex concentration N, we obtain for (2) the value
(le|/c)VeH, which corresponds to & = 1. As kgA decreases, the Hall resistance decreases
monotonically, reducing to zero at kA — 0. When kgd <€ 1, o o< (kgd)2.

In an experiment [1] it was actually observed that the Hall resistance of 2 2DEG in the
magnetic field of Abrikosov’s vortices coincides with the Hall resistance in a homo-
geneous magnetic field (to an accuracy of less than 1%). In the experiment the value of
kg was about 29, and the mean free path /; = 2 um. The experimental points lie on the
same straight line well in fields less than and greater than 200 G (in a field B = 200 G the
vortices were strongly overlapped so that the variation in magnetic field in the 2DEG
plane does not exceed several per cent).

The linear dependence (versus H) of magnetoresistance (see (3)) was also experi-
mentally observedin the region of magneticfields until the vortices were not overlapping.
The experiment [ 1] corresponded to the case of a sufficiently high electron concentration
that the electron wavelength was small compared with the vortex diameter. It would be
interesting to verify experimentally the predicted effect of deviation of the Hall resistance
from the value defined by the mean value of magnetic field in the system. This could be -
done by measuring the Hall resistance on heterostructures with one and the same
superconducting film but different electron concentrations n (each time the electron
mean free path should belarge compared with the vortex diameter). If the Hall resistance
(muiltiplied by nec) is plotted as a function of external magnetic field, the following
pattern should be observed. In the region of magnetic fields that are much smaller than
the characteristic field of vortex overlapping the straight lines corresponding to various
electron concentrations will have different slopes which are smaller for lower electron
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concentrations. This is due to the difference in the Hall factor. In the region of magnetic
fields larger than the field of vortex overlapping (when the magnetic field in the system
is uniform) the straight lines corresponding to different electron concentrations should
coincide.

3. Multiquantam vortex (y > 1}

In this section we consider the case when many quanta of flux y are enclosed inside the
vortex. The aim is to study the dependence of the Hall factor & on the parameter krd.
It is still assumed that the vortex diameter is small compared with the mean free path
and the model of the vortex with a sharp edge and constant internal field is used. The
result is shown in figure 3. In region I (kzA > y) the cyclotron radius R, in the vortex
internal field is large compared with the vortex diameter 24. Hence, the scattering is of
a small-angle nature (@ = A/R_ < 1). Therefore, in this parameter region the electron
wavefunction W may be found by the method described in section 2 (integrating the
vector potential along straight trajectories). As a result, for ¥ we obtain an expression
of type (9). Then using equation (13) and choosing again contour £, as shown in figure
4, we obtain (|e|/c)VH for (2) and, hence, & = 1 (as previously H is the mean magnetic
fieldin the plane). Now let us consider region 11 (see figure 3) where 72 <€ kA < ywhich
may be written as ip <€ R, <€ A. The first inequality implies that scattering both inside and
outside the vortex may be described by the quasiclassical method whilst the second
inequality implies that scattering is not of a small-angle type. In order to calculate the
transverse force, let us use equation (13) and choose the vortex perimeter as the
integration path. Since the electron movement in the whole space may be described by
classical mechanics, the tensor of momentum flux density may be written as Gy, = v,p;,
v; and p; being the kinematic velocity and momentum. Since the electron penetrates
into the vortex to a small depth of about R,, it is specularly reflected from the vortex
boundary (the local angle of incidence is equal to the angle of reflection) in the zero
approximation with respect to the parameter R./A. For this reason, the value
$; Giyiy df = A [d8 v,p, is equal to zero as electrons with impact parameters (+y) and
(~¥) make an opposite contribution to this value (v, is the projection of the electron
velocity on the radius vector; the incident electron flux is directed along the x axis). It is
obvious that the difference between the angle of incidence and the angle of reflection is
of the order of R./A < 1. This value will define the degree of scattering asymmetry on
the vortex in this parameter region. Thus we obtain

Sg Gty dl Avppp(Ro/A) < vepeR,

(only the parametric dependence and not the numerical coefficient which is about unity
is of interest). Multiplying the obtained value by the vortex concentration and using the
relationship Ny®, = H between the concentration and mean magnetic field, for (2) we
finally obtain (|e|/c)vzH(R./A)? and hence

a = (Rf/A)? = (keh[y)?. (14)

Thus, in this parameter region the Hall resistance decreases monotonically (figure
3). Estimating the value of & at point kg4 = ¥/, where the region of applicability of
equation (14) terminates, we obtain o = 1/y. Now refer to region I'V (figure 3). Using
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the results obtained in [2] for the scattering of a plane electron wave on an infinitely thin
magnetic string, for A — 0 we have

a = [sin(2xy)]/27y. (15

Clearly, in the region kgA < 1, aris also equal to (15) to within an order of magnitude (if
yis not equal to an integer or a half-integer so that sin(27y) = 1}. This case is shown by
the full curve in region I'V (figure 3). However, if y is an integer or a half-integer, then,
at A 0, o reduces to zero. However, on the boundary of the quantum region (kgd =
1), ashould also reach about 1/y (since in the region kx4 > 1, when the situation outside
the vortex is classical, there can be no difference between the cases when y is exactly
equal to an integer or a half-integer or is different from them). The case of an integer or
half-integer y is shown by the broken curve in region I'V (figure 3). Therefore, on the
boundaries of region Il the values of o have the same orders of magnitude and there is
no parametric variation in «. In region III the magnetic length in the internal vortex
field is smaller than the electron wavelength A5 <€ A (orfih, 2 e, & being the cyclotron
frequency in the internal vortex field). The electron movement outside the vortex may
be described classically; yetin the internal region the electron state is strongly quantized.
The electron penetrates into the vortex during scattering to 2 small depth of the order
of the magnetic length. Unfortunately, because of mathematical problems we cannot
determine the form of the dependence of « in this region but there are qualitative
physical considerations that suggest the absence of a parametric variation in w.
A brief account of this work has been published in [8].
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Appendix

Let us calculate « in (7). Since |F(8)|2 & 1/|6]* at {@| > 8,, (7) is determined by the
integration region |8| = 6, < 1. Then the integration for @ in (7) may be extended to
infinity and, with the aid of (11), & at 8 # 0 may be written as

1 do += e
a=5z| 5[ dpexp(~sipD explin(e)) exp(=iof) [ dpy expl-in(py)]

xexplipu) exp(-bioiD =5z | 08 [ dp exp(~slo) expliv(o)]

—0%

x exp(=ip8) | dp; exp(—8]o,]) exp[-ip(o1)] (—i a—f;) exp(ip: ).

—w 1

(A1)

In integral (A1) we have introduced the new integration variables y/A = p, kpA@ = &
(6— 0, 6 > 0). Following integration for p, by parts in (A1), integration with respect
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to & yields 228(p, - p). Finally we obtain

+oe
w= L[ gp920) _

1
2] T =Rletr ) - e =1. (A2)

Note that using the relationship

9 A, te [3A, 9A e
S0 [ ()£

ay kel ay ax

where H is the internal field in the vortex, (A2) may be also written as

e [t= +

] ke (+*

where 8,(y) is the angle of electron scattering on the vortex for an impact parameter y
calculated from the formulae of classical mechanics for Apd 2 1. Thus, in this limit, &
coincides with the value calculated with the help of classical mechanics (and equal to
unity), This is due to the small-angle character of scattering.

Now let us turn to calculation of (8). Using the small value of 8 and introducing again
the variables p and § we may write (8) as

1 g = o
T ZEJ_T d f_w dp exp(—3|o|) {explig(p)] —l}a—i— exp(—i&p)
x [ dov exp(=5los) fexl-ig(o) ~1j3 - exp(isp,) (AS)

-

NUF
@= kA

Following integration by parts for o and p; in (AS), integration with respect to § yields
2nd(p, — p). Finally we obtain

+1 1
—j (——) —29[ dp (1 — p?) =463 —. (A6)
TU —t TD
Using (A3), we may also write (A6) as
1 NUF( )2 e ( e )2 NUFJ""‘ )
e 2 7E ) dx A(x, =—=1 -—-dy&i(y). A7
k) ) dy B (x, ) T aly) (A7)
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